以下是三角函数12个基本公式的整理,综合多个权威来源整理而成:
一、同角三角函数基本关系
-
周期性公式 $$\sin(\alpha + 2k\pi) = \sin\alpha, \quad \cos(\alpha + 2k\pi) = \cos\alpha, \quad \tan(\alpha + 2k\pi) = \tan\alpha \quad (k \in \mathbb{Z})$$
-
平方关系 $$\sin^2\alpha + \cos^2\alpha = 1$$ $$\tan^2\alpha + 1 = \sec^2\alpha \quad \Rightarrow \quad \cot^2\alpha + 1 = \csc^2\alpha$$
-
商数关系 $$\tan\alpha = \frac{\sin\alpha}{\cos\alpha} \quad \Rightarrow \quad \cot\alpha = \frac{\cos\alpha}{\sin\alpha}$$
二、诱导公式(五组)
-
终边相同角 $$\sin(2k\pi + \alpha) = \sin\alpha, \quad \cos(2k\pi + \alpha) = \cos\alpha \quad (k \in \mathbb{Z})$$
-
$\pi$ 加角 $$\sin(\pi + \alpha) = -\sin\alpha, \quad \cos(\pi + \alpha) = -\cos\alpha \quad \Rightarrow \quad \tan(\pi + \alpha) = \tan\alpha$$
-
负角 $$\sin(-\alpha) = -\sin\alpha, \quad \cos(-\alpha) = \cos\alpha \quad \Rightarrow \quad \tan(-\alpha) = -\tan\alpha$$
-
$\pi/2$ 加角 $$\sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha, \quad \cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha \quad \Rightarrow \quad \tan\left(\frac{\pi}{2} + \alpha\right) = -\cot\alpha$$
-
$\pi/2$ 减角 $$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha, \quad \cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha \quad \Rightarrow \quad \tan\left(\frac{\pi}{2} - \alpha\right) = \cot\alpha$$
三、和差角公式
-
两角和 $$\sin(A + B) = \sin A \cos B + \cos A \sin B$$ $$\cos(A + B) = \cos A \cos B - \sin A \sin B$$ $$\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$
-
两角差 $$\sin(A - B) = \sin A \cos B - \cos A \sin B$$ $$\cos(A - B) = \cos A \cos B + \sin A \sin B$$ $$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$
四、倍角公式
-
二倍角 $$\sin 2A = 2 \sin A \cos A$$ $$\cos 2A = \cos^2 A - \sin^2 A = 2 \cos^2 A - 1 = 1 - 2 \sin^2 A$$ $$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$
-
半角 $$\sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{2}}$$ $$\cos \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{2}}$$ $$\tan \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}}$$
五、辅助角公式 $$a \sin x + b \cos x = \sqrt{a^2 + b^2} \sin(x + \phi)$$
其中 $\tan \phi = \frac{b}{a}$。
这些公式是三角函数