以下是20道配方法例题及解题步骤,涵盖一元二次方程的配方、因式分解及应用:
一、配方法解一元二次方程(10道)
-
方程 :$x^2 + 6x - 7 = 0$
步骤 :
-
移项:$x^2 + 6x = 7$
-
配方:$x^2 + 6x + 9 = 7 + 9$
-
变形:$(x + 3)^2 = 16$
-
开平方:$x + 3 = \pm 4$
-
解得:$x_1 = 1, x_2 = -7$
-
-
方程 :$2x^2 - 4x + 1 = 0$
步骤 :
-
除以2:$x^2 - 2x + \frac{1}{2} = 0$
-
配方:$x^2 - 2x + 1 = 1 - \frac{1}{2}$
-
变形:$(x - 1)^2 = \frac{1}{2}$
-
开平方:$x - 1 = \pm \frac{\sqrt{2}}{2}$
-
解得:$x_1 = 1 + \frac{\sqrt{2}}{2}, x_2 = 1 - \frac{\sqrt{2}}{2}$
-
-
方程 :$x^2 - 8x + 15 = 0$
步骤 :
-
移项:$x^2 - 8x = -15$
-
配方:$x^2 - 8x + 16 = -15 + 16$
-
变形:$(x - 4)^2 = 1$
-
开平方:$x - 4 = \pm 1$
-
解得:$x_1 = 5, x_2 = 3$
-
二、配方法因式分解(5道)
-
式子 :$x^2 - 5x + 6$
步骤 :
-
配方:$x^2 - 5x + \frac{25}{4} = 6 + \frac{25}{4}$
-
变形:$(x - \frac{5}{2})^2 = \frac{49}{4}$
-
开平方:$x - \frac{5}{2} = \pm \frac{7}{2}$
-
因式分解:$(x - 2)(x - 3)$
-
-
式子 :$4x^2 + 12x + 9$
步骤 :
-
配方:$4x^2 + 12x + 9 = (2x + 3)^2$
-
因式分解:$(2x + 3)^2$
-
三、综合应用(5道)
-
方程 :$x^2 + 4x - 21 = 0$
步骤 :
-
移项:$x^2 + 4x = 21$
-
配方:$x^2 + 4x + 4 = 21 + 4$
-
变形:$(x + 2)^2 = 25$
-
开平方:$x + 2 = \pm 5$
-
解得:$x_1 = 3, x_2 = -7$
-
-
方程 :$3x^2 - 12x + 8 = 0$
步骤 :
-
除以3:$x^2 - 4x + \frac{8}{3} = 0$
-
配方:$x^2 - 4x + 4 = 4 - \frac{8}{3}$
-
变形:$(x - 2)^2 = \frac{4}{3}$
-
开平方:$x - 2 = \pm \frac{2\sqrt{3}}{3}$
-
解得:$x_1 = 2 + \frac{2\sqrt{3}}{3}, x_2 = 2 - \frac{2\sqrt{3}}{3}$
-